Generative Simulators: The Foundations for Self-Adapting
Intelligence

Patronus Al

Abstract

As machine learning systems become increasingly agentic, static datasets, hand-written en-
vironments, and fixed benchmarks are proving insufficient for training, evaluation, and gov-
ernance. Agents deployed in real-world settings must reason under uncertainty, interact over
long horizons, and continuously remember and adapt as their understanding of tasks, tools, and
constraints evolves. We introduce Generative Simulators, adaptive environments that jointly
co-generate tasks, world dynamics, and reward functions. We believe that generative simulators
constitute the foundational infrastructure for self-adaptive world modeling, extending beyond
reinforcement learning algorithms and beyond human-curated datasets.

1 Introduction

Modern machine learning systems are most commonly evaluated on static benchmarks, but these are
susceptible to contamination, leakage, and saturation [4]. The paradigm of training and evaluating
on reinforcement learning environments, each containing a set of tasks, world tools through which
the model interacts with the environment and reward functions to evaluate and provide feedback
on performance, has given rise to a new era of post-training. Most commonly found reinforcement
learning post-training environments are designed for domain specific tasks like software engineering
[2] and customer service [5) 1] and help assess and improve basic tool use, environment exploration
and instruction following capabilities of models. However, with the recent improvements in models,
these benchmark environments have come to saturate as well, such as 72-Bench getting nearly
saturated by GPT-5.2 [3]. This saturation is due to lack of plasticity of these environments. We
believe that the future of environments is dynamic and self-adaptive to model capabilities. This
report provides a position and showcases a preview of our work on environments built to auto-
scale with model capabilities. Additionally, we show that careful orchestration and design of task
generation processes, tooling infrastructure and reward processes can remove the domain-specific
restriction of environments and turn them into high plasticity worlds.

2 Generative Simulators

To demonstrate that automatic increases in plasticity are possible, we propose a novel class of
adaptive environment generators called Generative Simulators. One such example of a Generative
Simulator is shown in Figure Once a task’s difficulty and simple configurations have been
specified, our Task Generation module would sequentially create tasks that satisfy these constraints,
coupled with task timelines that are reflective of difficulty (e.g. difficult tasks should take longer
to execute). A set of tools is also selected based on the task difficulty, with more challenging tasks
requiring more extensive tool sets. Given the generated tasks, we would perform curriculum-based
task filtering based on current agent’s capabilities and required difficulty levels and couple these

tasks with tool stacks of appropriate complexity. These task-tool tuples would then be used to
evaluate and train an agent. The agent then executes the tasks, producing a series of output
trajectories. These trajectories are finally scored using a reward function to populate the final
evaluation report. In an ideal scenario, this reward function is co-generated with the task definition
but is ensured to be verifiable. In such a system, the three synthetic components of task generation,
world tooling and reward modeling can be independently or jointly made more difficult which helps
scale difficulty for problematic areas of the model specifically. This provides the required plasticity
in the world. Furthermore, with this design, the domain specificity of an RL environment can be
naturally altered by adding, removing or swapping out toolsets specific to a domain. For example,
adding a browser use toolset to an existing SWE-Bench like task can help extend the domain-set
to frontend development situations where the agent is required to debug visually using the browser
tools.

Tool Stack

Task Generation (0
\ o

A
’k b | &. mEm ’
Task Generator <
I 8)] A
v Task Difficulty Scale P e \\‘ MEM O

Timeline Generator < [
’l'l" N\ =y]

i 1 A

Agent
8 Y
9 Task Difficulty Scale

<>
T
Easy Task Medium Task Hard Task
+ Short Timeline + Timeline + Large Timeline A { }]
| | S(S)
a\Y,
Output
. Traiect Reward
Curriculum-based rajectory Function
task filtering
I8
Task Difficulty Scale x

Evaluation Report

Figure 1: An illustration of Generative Simulators. Our adaptive environment generators are
capable of producing a diverse set of tasks and tool sets with minimal specification.

2.1 Formal Definition of Generative Simulators

Let £ denote a generative LLM. A Generative Simulator is a tuple G = (7, W, R,C) where each
component is an LLM-parameterized generator:

T:0xD EM— generates task instances given specifications and directives

W:MxD %520 generates tool configurations conditioned on task and directives

R:MxD5% (H — R) — generates verifiable reward functions

C: MxIIxD £ 0,1 — decides task inclusion based on agent capability
where D is the space of natural language directives (e.g., “increase task complexity”, “add more
tools”, “make rewards sparser”).

Algorithm 1 Generative Simulator Training with LLM-based Adaptation
Require: Generator LLM Lg, Oversight LLM Lo
Require: Initial directive dy € D, batch size K, threshold n

1: Initialize policy my

2: Initialize directive d < dy

3: Initialize oversight memory B < ()

4: for epoche=1,...,N do

5. D. + 0 {Epoch buffer}

6: for episode k=1,...,K do
T: {Phase 1: LLM-based Environment Generation}
8: Sample base specification 0y ~ p(O)
9: my <+ Lo (GenTask(Hk, d))

10: O+ La (GenTools(mk, d))

11: T'my, < L¢(GenReward(my, d))

12: {Phase 2: LLM-based Curriculum Filtering}
13: accept < Lo (Filter(mk, T8, d))

14: if not accept then

15: continue

16: end if

17: {Phase 3: Agent Rollout}

18: So ~ po(mk), Tk < <>

19: fort=0,...,Thax — 1 do

20: ag ~ 7T9(' | St,Ok)

21: St41 P(| St,(lt,mk,Ok)

22: T < T D (S¢, ar)

23: if TERMINAL(s¢41,my) then

24: break

25: end if

26: end for

27: Tk < T'my (Tk)

28: D, (—'DGU{(Tk,Tk,mk,Ok)}

29: end for

30: {Phase 4: Policy Update}

31: 6 < RLUPDATE(, D.)

32: {Phase 5: Oversight Analysis & Memory}
33: Fe < {(r,m,0): (r,7,m,0) € D, r <n}

34: B+ BUF,

35: Te <~ MEANREWARD(D,)

36: {Phase 6: LLM-based Directive Update}
37: d + Lo(Adapt(d, T, B))

38: end for

39: return my

Algorithm 2 Oversight Directive Adaptation (LLM Subroutine)
Require: Oversight LLM Lo
Require: Current directive d, mean reward 7, failure memory B, threshold 7
{Failure Mode Analysis}
report < Lo (ANALYZEFAILURES(B))
{Identify Bottleneck Dimensions}
bottleneck < Lo (CLASSIFYFAILURES (report))
{Returns subset of {task,tools, reward}}
{Generate Updated Directive}
if ¥ > n then
context < (d, bottleneck, "increase difficulty")
d' + Lo (UPDATEDIRECTIVE(context))
else
context « (d, report, "maintain or simplify")
d' + Lo (UPDATEDIRECTIVE(context))
: end if
: return d’

e e
Ll e

2.2 Algorithm Overview

We present two interconnected algorithms that formalize our approach to LLM-driven generative
simulation and curriculum learning. Algorithm [I]describes the main training loop, which interleaves
environment generation, policy learning, and adaptive curriculum control. Algorithm [I] details the
oversight mechanism that analyzes agent performance and updates training directives accordingly.

Main Training Loop (Algorithm The algorithm operates in six distinct phases per epoch.
First, a generator LLM (Lg) synthesizes novel task instances, tool configurations, and reward
functions based on the current directive d (lines 8-11). Second, an oversight LLM (Lp) filters
tasks based on estimated agent capability, implementing curriculum pacing (lines 13-16). Third,
the agent performs rollouts in accepted environments (lines 18-26). Fourth, policy parameters
are updated via standard RL (line 29). Fifth, failed trajectories are aggregated into an oversight
memory B for analysis (lines 31-33). Finally, the oversight LLM adapts the directive based on
performance trends and failure patterns (line 36), creating a closed feedback loop that continuously
calibrates task difficulty and diversity.

Directive Adaptation (Algorithm The oversight subroutine implements reflective curricu-
lum control through structured LLM reasoning. It first analyzes accumulated failures to identify
systematic patterns (line 2), then classifies bottlenecks across the task, tool, or reward dimensions
(lines 4-5). Based on mean performance relative to threshold 7, it generates an updated direc-
tive: when performance is high, it increases difficulty along bottleneck dimensions (lines 8-9); when
performance is insufficient, it maintains or simplifies task distributions (lines 11-12). This condi-
tional branching ensures the curriculum remains in the agent’s zone of proximal development while
systematically expanding coverage.

3 Conclusion

Present day static datasets, hand-authored environments, and human-curated demonstrations do
not automatically scale with the learning patterns of the trained model. Generative Simulators
provide a principled alternative: environments that evolve, evaluate, and adapt to agent behavior
over time. To this extent, we propose a formalization for Generative Simulators and attempt to
outline the workflow for such dynamic environments. While extremely long-horizon tasks span-
ning weeks remain difficult to evaluate and many objectives involve non-verifiable rewards such as
usefulness or trust, we believe that autonomous scaling as in the case of Generative Simulators is
crucial. We believe that these adaptive environments will contribute significantly to the growth
of the field and would minimize human effort and supervision needed for aligning models. Future
challenges include noisy sensors and irreversible actions and we believe that bridging generative
simulators with robotics remains an open research problem that we are determined to solve.

References

[1] Victor Barres et al. “r2.-Bench: Evaluating Conversational Agents in a Dual-Control Environ-
ment”. In: arXiv preprint arXiv:2506.07982 (2025).

[2] Carlos E Jimenez et al. “Swe-Bench: Cand Language Models Resolve Real-World Github
Issues?” In: 12th International Conference on Learning Representations, ICLR 2024. 2024.

[3] OpenAl. Update to GPT-5 System Card: GPT-5.2. https://openai.com/index/gpt-5-
system-card-update-gpt-5-2/. Accessed: 2025-12-15. Dec. 2025.

[4] Manley Roberts et al. “To the cutoff ... and beyond? a longitudinal perspective on llm data
contamination”. In: The Twelfth International Conference on Learning Representations. 2023.

[5] Shunyu Yao et al. “7-bench: A Benchmark for Tool-Agent-User Interaction in Real-World
Domains”. In: arXiv preprint arXiv:2406.12045 (2024).

https://openai.com/index/gpt-5-system-card-update-gpt-5-2/
https://openai.com/index/gpt-5-system-card-update-gpt-5-2/

	Introduction
	Generative Simulators
	Formal Definition of Generative Simulators
	Algorithm Overview

	Conclusion

